翻訳と辞書
Words near each other
・ Hebei Road Subdistrict
・ Hebei Television
・ Hebei University
・ Hebei University of Economics and Business
・ Hebei University of Engineering
・ Hebei University of Science and Technology
・ Hebei University of Technology
・ Hebei Zhongji F.C.
・ Hebei–Chahar Political Council
・ Heavyweight Champion of the World (song)
・ Heavyweight Dub Champion
・ Heavyweight Rib Ticklers
・ Heavyweight Wrestling
・ HeavyWeight Yoga
・ Heavyweights
Heawood conjecture
・ Heawood graph
・ Heawood Hall
・ Heawood number
・ Heazlewoodite
・ Heaðobards
・ Heaðolaf
・ HEB
・ Heba El Torky
・ Heba El-Sisy
・ Heba Elsewedy
・ HEBA Greek All Star Game
・ Heba Kotb
・ Heba Rabie
・ Heba Selim


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Heawood conjecture : ウィキペディア英語版
Heawood conjecture
In graph theory, the Heawood conjecture or Ringel–Youngs theorem gives a lower bound for the number of colors that are necessary for graph coloring on a surface of a given genus. For surfaces of genus 0, 1, 2, 3, 4, 5, 6, 7, ..., the required number of colors is 4, 7, 8, 9, 10, 11, 12, 12, .... , the chromatic number or Heawood number.
The conjecture was formulated in 1890 by Percy John Heawood and proven in 1968 by Gerhard Ringel and Ted Youngs. One case, the non-orientable Klein bottle, proved an exception to the general formula. An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere, solved in 1976 as the four color theorem by Haken and Appel. On the sphere the lower bound is easy, whereas for higher genera the upper bound is easy and was proved in Heawood's original short paper that contained the conjecture. In other words, Ringel, Youngs and others had to construct extreme examples for every genus g = 1,2,3,.... If g = 12s + k, the genera fall into 12 cases according as k = 0,1,2,3,4,5,6,7,8,9,10,11. To simplify, suppose that case k has been established if only a finite number of g's of the form 12s + k are in doubt. Then the years in which the twelve cases were settled and by whom are the following:
*1954, Ringel: case 5
*1961, Ringel: cases 3,7,10
*1963, Terry, Welch, Youngs: cases 0,4
*1964, Gustin, Youngs: case 1
*1965, Gustin: case 9
*1966, Youngs: case 6
*1967, Ringel, Youngs: cases 2,8,11
The last seven sporadic exceptions were settled as follows:
*1967, Mayer: cases 18, 20, 23
*1968, Ringel, Youngs: cases 30, 35, 47, 59, and the conjecture was proved.
==Formal statement==

Percy John Heawood conjectured in 1890 that for a given genus ''g'' > 0, the minimum number of colors necessary to color all graphs drawn on an orientable surface of that genus (or equivalently to color the regions of any partition of the surface into simply connected regions) is given by
:\gamma (g) = \left \lfloor \frac \right \rfloor,
where \left \lfloor x \right \rfloor is the floor function.
Replacing the genus by the Euler characteristic, we obtain a formula that covers both the orientable and non-orientable cases,
: \gamma(\chi) = \left \lfloor \frac{7 + \sqrt{49 - 24\chi}}2 \right \rfloor.
This relation holds, as Ringel and Youngs showed, for all surfaces except for the Klein bottle. Philip Franklin (1930) proved that the Klein bottle requires at most 6 colors, rather than 7 as predicted by the formula. The Franklin graph can be drawn on the Klein bottle in a way that forms six mutually-adjacent regions, showing that this bound is tight.
The upper bound, proved in Heawood's original short paper, is based on a greedy coloring algorithm. By manipulating the Euler characteristic, one can show that every graph embedded in the given surface must have at least one vertex of degree less than the given bound. If one removes this vertex, and colors the rest of the graph, the small number of edges incident to the removed vertex ensures that it can be added back to the graph and colored without increasing the needed number of colors beyond the bound. In the other direction, the proof is more difficult, and involves showing that in each case (except the Klein bottle) a complete graph with a number of vertices equal to the given number of colors can be embedded on the surface.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Heawood conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.